Skip Navigation

New Hampshire Network of Biomedical Research Excellence (NH-INBRE) at Keene State College

Experience the art of biomedical discovery.

Over the past eight years, the NH-INBRE network has supported biomedical science research at Keene State. It has provided support for research on cancer, cholera, hope in young people and communication in people with autism, among other areas.

NH-INBRE has directly engaged over 145 students through employment in research labs and projects and funding travel to conferences. Our student researchers come from a variety of majors including biology, chemistry, public health, psychology, criminal justice/social sciences, safety/occupational health, human performance/movement sciences, environmental studies, and economics. After graduation, many INBRE student researchers pursue master’s or PhD degrees or are employed in the biotech/medtech field.

More than 20 Keene State professors have received support for their labs and projects from NH-INBRE in the form of funding for student researchers, supplies and equipment, travel, training, data analysis, and bioinformatics and consultation services.

NH-INBRE News and Updates


The New Hampshire IDeA Network of Biological Research Excellence (NH-INBRE) is a state-wide initiative led by the Geisel School of Medicine at Dartmouth College and the University of New Hampshire designed to develop a coordinated network of biomedical research and training. Specifically, it aims to:

  • Nurture scientific, scholarly and administrative interactions
  • Develop biomedical research infrastructure
  • Create research opportunities for students and faculty
  • Stimulate science and research culture
  • Advance bioinformatics and genomics infrastructure, training and research activities
NH-INBRE at Keene State

NH-INBRE is funded by NIH Grant Number P20GM103506 from the IDeA program of the National Institute of General Medical Sciences at the National Institutes of Health, and is a collaborative network of 2 year and 4 year colleges in the State of New Hampshire. The NH-INBRE network is comprised of two "lead” research-intensive institutions, the Geisel School of Medicine at Dartmouth and the University of New Hampshire, and the “partner” primarily undergraduate institutions: Colby-Sawyer College, Community College System of New Hampshire (CCSNH), Franklin Pierce University, Keene State College, New England College, Plymouth State University, and Saint Anselm College.The IDeA program builds research capacities in states that historically have had low levels of NIH funding by supporting basic, clinical and translational research; faculty development; and infrastructure improvements. For more information about the INBRE activities around the state, visit nhinbre.org.

Here at Keene State College, NH-INBRE is supporting advances in scientific discovery and training the next generation of researchers in a number of ways:

Research projects. In addition to addressing important scientific questions, these projects directly engage our undergraduates in the process of discovery, giving them valuable hands-on experience.
Research training activities. This includes money for faculty members engaged in biomedical research to hire student research assistants both during the academic year and the summer, funds for research travel, and supplies. In many cases, students can spend a summer working on a research project alongside a faculty mentor, rather than seek other summer employment. Student researchers also have opportunities to present their research findings at meetings and conferences.
Access to research resources. Additionally, through the NH-INBRE network, our faculty and students have access to colleagues, training, research instrumentation, and other research-related resources and experiences around the state.


NH-INBRE funded Research Projects at KSC

Advancement of a Novel Fatty Acid Synthase Inhibitor

Paul Baures Student

Project Leader: Paul Baures, Department of Chemistry, Keene State College
Collaborator/Mentor: William B. Kinlaw, Geisel School of Medicine, Dartmouth College

Cancer cells have a significantly different metabolism than healthy cells, including an increased need for fatty acids that are made directly in the cell. Previous efforts to use inhibitors of fatty acid synthesis in animal models of cancer led to undesired weight loss, preventing the advancement of the inhibitors in clinical studies. This research project is developing an inhibitor of the thioesterase domain of fatty acid synthase (FASN) and is nearing the point where the compound can be tested in animal models of breast cancer to determine if it mitigates this side effect.

Success in this project will provide the research community a high-value tool compound for investigating the inhibition of the multi-domain enzyme fatty acid synthase in cancer outcomes and a host of other metabolic disorders in animal models. The compound will also represent a lead compound for development into a novel and effective clinical therapeutic for use in the treatment of cancer.


Role of Nutritional Status on Arsenic Susceptibility

Dr. Priyanka Roy Chowdhury
Dr. Priyanka Roy Chowdhury

Project Leader: Priyanka Roy Chowdhury, Department of Biology, Keene State College

Arsenic compounds are prevalent environmental toxicants that are also potent carcinogenic agents to humans. The metabolism of arsenic has an important role in its toxicity and there exists striking variation in individual susceptibility to arsenic-induced health effects. Nutrition is also related to arsenic toxicity, where people with poor nutrition are particularly vulnerable, although the underlying mechanism of this interaction is not well understood.

Dr. Roy Chowdhury’s research focuses on understanding the cellular, biochemical and metabolic pathways that are involved in driving the observed arsenic-nutrition interaction. She will be studying these pathways under different nutritional and arsenic exposures in the popular Ecotox model organism Daphnia. Such mechanism-based inquiries will allow for better risk-management strategies for not only arsenic related health effects but also in other heavy-metal induced toxicity.


Neural Mechanisms of Emotional Vigilance in Posttraumatic Stress Disorder

Project Leader: Harlan Fichtenholtz, Department of Psychology, Keene State College Collaborator/Mentor: Lauren M. Sippel, Geisel School of Medicine, Dartmouth College

Hypervigilance is one of the diagnostic symptoms in PTSD and individuals with PTSD often exhibit biases toward threatening cues. Recent clinical trials have shown that training anxious individuals to overcome attentional biases can improve symptoms of anxiety. Many psychiatric conditions are characterized by behavioral dysfunctional in attention-emotion interactions, and some conditions benefit from treatment strategies associated with emotional cueing of attention. Dr. Fichtenholtz’s study combines Electroencephalogram (EEG) and Event-Related Potential (ERP) techniques with eye tracking and simple choice response latency measures to study this interaction in healthy adult participants and trauma-exposed individuals with and without PTSD. This integrative methodological approach has the potential to afford new understanding of how overt and covert attentional systems are biased by emotional value, which may inform novel approaches to intervention.


Other research supported by NH-INBRE at KSC

Exploring the Benefits of Informal Care Networks as Strategies for Self-care among Incarcerated Women with Histories of Trauma
Dr. Angela Barlow

Characterization of the Microbiome and Mycobiome of Food Protein Induced Enterocolitis Syndrome (FPIES) Children and Their Mothers
Dr. Jeanelle Boyer

The Influence of Whole Body Vibration on Commercial Driver Fatigue in the Solid Waste Disposal Industry
Colin Brown

Design, Synthesis and Evaluation of New Galantamine Derivatives as Acetylcholinesterase Inhibitors
Dr. Jerry Jasinski

Using neighborhood based air monitoring and social media to encourage voluntary reduction in residential wood burning to improve air quality in Keene, NH
Dr. Nora Traviss & Dr. Thomas Webler


Previously funded NH-INBRE Research Projects at KSC

These projects continue to receive support through the NH-INBRE Research Support & Training Grant (RSTG)

An Efficacy and Feasibility Study of a Hope-Centered Intervention for Adolescents

Tony Scioli

Project Leader: Anthony Scioli, Professor, Department of Psychology, Keene State College
Collaborator/Mentor: Anna Adachi-Mejia, Geisel School of Medicine, Dartmouth College

The adolescent years are an important time for building self-confidence, fine-tuning relationship skills, expanding coping strategies, and developing a sense of purpose in life. However, it is also a time when personal, social, and existential challenges may result in the first signs of mental illness.

Dr. Scioli’s INBRE project evaluated his integrative intervention to instill fundamental (trait) hope in adolescents with symptoms of mild depression. This intervention was developed and evaluated in the context of a training and research program designed to cultivate hope-oriented undergraduate scientist-practitioners. The pilot data gathered from this research will be the first step towards developing formal, larger scale, clinical trials. By reducing hopelessness, the project expects to reduce the burden of mental illness and unhealthy lifestyles in the critical adolescent years.


Behavioral and Cortical Effects of Computerized Language Training for Autism

Larry Welkowitz

Project Leader: Lawrence Welkowitz, Professor, Department of Psychology
Collaborator/Mentor: Laura Flashman, Advanced Brain Imaging Lab, Geisel School of Medicine, Dartmouth College

Our three-year study focused on improving social communication skills in adolescents with diagnosed Autism. According to the CDC, Autism prevalence has climbed to 1.7% or 1 in 59 children and computer-based language communication deficits have largely been a neglected area of study. Additionally, the use of computer-based language training programs to improve social skills in individuals with Autism Spectrum Disorders (ASDs) have largely been unexplored. This study demonstrated the viability of an iPad-based software application that provided visual feedback for “matching” of acoustical patterns in speech. Preliminary data suggest that such a program is easy to implement and produces improvement in several areas of the noncontent aspects of conversational speech.

In addition to fMRI studies of the speechmatch program at Dartmouth Medical Center, Dr. Welkowitz (along with Dr. Robert Taub) has received further funding through the NIH-funded Treat Center to further develop the software and to build cloud-based data analytic systems. Welkowitz and Taub have also submitted an SBIR grant to NIH’s NIDCD.

The Effects of PAH Exposure on Early Development

Project Leader: Dr. Susan Whittemore

Liz Richardson, photo by John Gilbert Fox
Liz Richardson, photo by John Gilbert Fox

Phenanthrene, pyrene, fluoranthene, and benzo(a)- pyrene are common contaminants, known as polycyclic aromatic hydrocarbons or PAHs, deposited into soil, water, and air as a result of the incomplete combustion of carbon-containing compounds.

Research students in the Whittemore lab were using the model organism the African clawed frog (Xenopus laevis) to assess the impact of developmental PAH exposure on normal heart function. They used a variety of techniques to assess for cardiac effects, including video recordings of beating hearts and quantitative gene expression analysis.


Light-Induced Pigment Cell Apoptosis

Project Leader: Dr. Jason Pellettieri

Dr. Jason Pellettieri

Associate Professor of Biology Dr. Jason Pellettieri is leading a study of the effects of intense visible light on pigment cells in planarians (Schmidtea mediterranea), aquatic flatworms with an amazing ability to regrow severed body parts. Preliminary data suggest that planarian pigment cells die when exposed to bright visible light for extended periods of time. Further research may have implications for human health and understanding disease mechanisms. For human health, a normal number of pigment cells are critical. Skin melanocytes, for example, normally provide protection from the damaging effects of ultraviolet (UV) radiation, but stimulate the growth of too many melanocytes, and you’re a candidate for melanoma.

Following his NH-INBRE supported project, Dr. Pellettieri was awarded an EAGER grant from the National Science Foundation (IOS-1445541), an Academic Research Enhancement Award (AREA/R15) from the National Institutes of Health (R15GM107826), and an NIH R15 grant (R15GM126456). The EAGER program supports “potentially transformative research ideas or approaches,” and the R15 program supports meritorious health-related studies that engage undergraduates in top-quality research. Dr. Pellettieri and his research students are investigating a possible novel mechanism for clearing dead or damaged cells from animal tissues and the molecular biology of regeneration using the planarian as a model organism.

The mentor for Dr. Pellettieri’s NH-INBRE project was David Mullins, Assistant Professor of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College.


A Molecular Characterization of the Structure and Function of Petroleum Hydrocarbon Degrading Microbes Present in the Tidal Wetlands of the Great Bay Estuary.

Project Leader: Dr. Loren Launen, Keene State College

Project Collaborator: Dr. Sinéad Ní Chadhain (visiting scholar)

Jarrett Miller, photo by John Gilbert Fox
Jarrett Miller, photo by John Gilbert Fox
Associate Professor of Biology Dr. Loren Launen led a study of petroleum hydrocarbon degradation in Great Bay Estuary salt marshes.

Petroleum hydrocarbons are a group of highly toxic pollutants produced whenever fossil fuels are burned. They are released into the atmosphere, soils, and surfaces and, due to their chemical stability, the levels of petroleum hydrocarbons in soils and sediments are increasing globally. The major means of petroleum hydrocarbons removal from salt marshes is through microbial degradation by indigenous microbial communities. However, our understanding of the structure and function of these microbial communities is limited. Drawing on a combination of Dr. Launen’s experience characterizing petroleum hydrocarbons degradation by salt marsh microbes, and collaborator Dr. Ní Chadhain’s expertise in molecular microbiology, the results of this project will be useful in understanding what factors limit or enhance bioremediation of petroleum hydrocarbons-contaminated salt marshes.

The mentor for Dr. Launen’s pilot project was Dr. Stephen Jones, Research Associate Professor, University of New Hampshire Marine Program.


For more information or questions about the NH-INBRE program in Keene State College,
contact Lynn Arnold larnold@keene.edu, Program Manager


Contact the Office of Sponsored Projects and Research

Please visit our staff page for a directory of contacts for various sponsored projects and research functions.